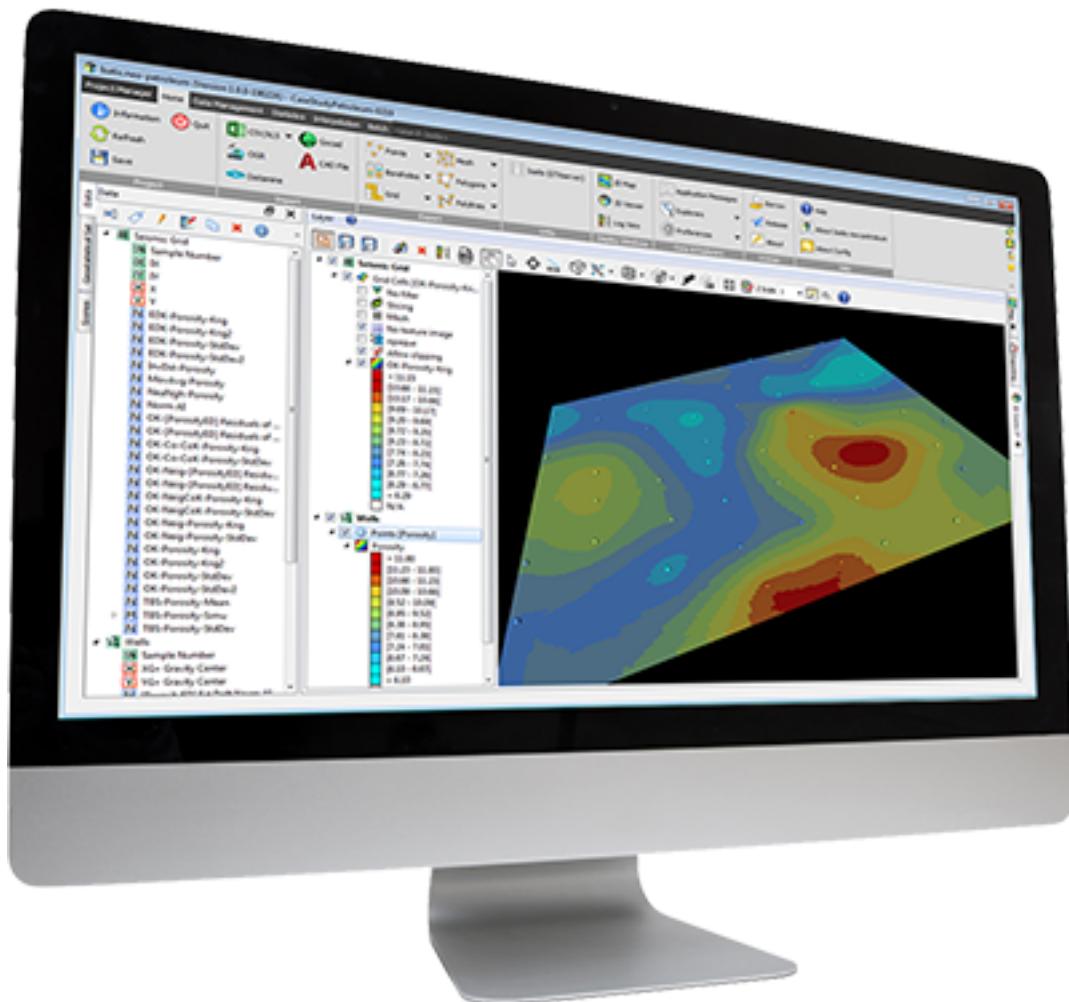


Isatis.neo 2025.2

Release Notes

© Copyright 2025 Datamine Corporate Ltd
All Rights Reserved Confidential and Proprietary
Published: Wednesday, December 10, 2025

The information contained in this documentation is subject to change without notice and is not warranted to be error-free. This documentation contains confidential information proprietary to Datamine Corporate Ltd which must not be disclosed, copied, or distributed to any third party without prior written consent of Datamine. Any unauthorised use or disclosure of this information would constitute a breach of confidentiality and would result in legal action.


Contents

Overview	4
Licensing	5
Project compatibility	5
Platforms and Requirements	5
Further Information	6
Isatis.neo 2025.2	7
Home	7
Statistics	7
Interpolation	9
Display	13
Defect Fixes	14
Isatis.neo 2025.2.1	17
Improvements and fixes in PluriGaussian Simulations	17
Defect Fixes	17

Overview

Isatis.neo is a sophisticated solution offering unmatched flexibility for geostatisticians and mineral resource estimation geologists. It provides a wide range of statistical and geostatistical tools designed to efficiently achieve precise resource estimations while addressing unique project challenges. Automatic parameter settings streamline processes, while advanced users can modify parameters for greater precision and control. Its intuitive interface, combined with cutting-edge parallelised algorithms, ensures both ease of use and high-performance computing. With Python integration for enhanced extensibility and batch processing capabilities that guarantee traceability and reproducibility, Isatis.neo enables seamless adaptation to various configurations and empowers users to customise their workflows with confidence.

Licensing

Before installation of the new Isatis.neo version, please check that your license is still covered by a maintenance contract and/or your license key is still available. By default, license keys are valid for 12 months. They are compatible with all the software versions that will be released during the validity period of your maintenance contract.

Site licenses need to be installed on your license server by your license administrators. For the cloud licenses, a new license file will be automatically deployed on Geovariances' servers.

For **Isatis.neo-mining**, we now provide a version on the [Customer Support Portal](#) and on Geovariances' [website](#) compatible with **Datamine License services** and **Geovariances License Manager** (RLM). You will only have to choose one of the License system during the installation.

Please contact us via the [Customer Support Portal](#) for any information regarding your license and maintenance contract.

Project compatibility

Your projects are automatically converted into the new format when you open them.

Platforms and Requirements

Before installing Isatis.neo, please make sure that the following software products are also installed on your Personal Computer:

- Windows 10 or 11 (64 bits only) or Linux Ubuntu 20.04 or higher - on PCs with Intel compatible processors are supported by Isatis.neo.
- An HTML 5.0 compliant browser such as Google Chrome (recommended, Firefox or Microsoft Edge are also supported).

Note: NVIDIA graphic cards with the most recent drivers are recommended for the use of the 3D Viewer. AMD/ATI cards with recent drivers are also supported. Intel graphic cards are known to cause some problems during 3D graphic rendering.

Further Information

This document includes cumulative release notes for Isatis.neo. Release notes for other versions of Isatis.neo are available via the [Customer Support Portal](#) or via the Geovariances' [website](#).

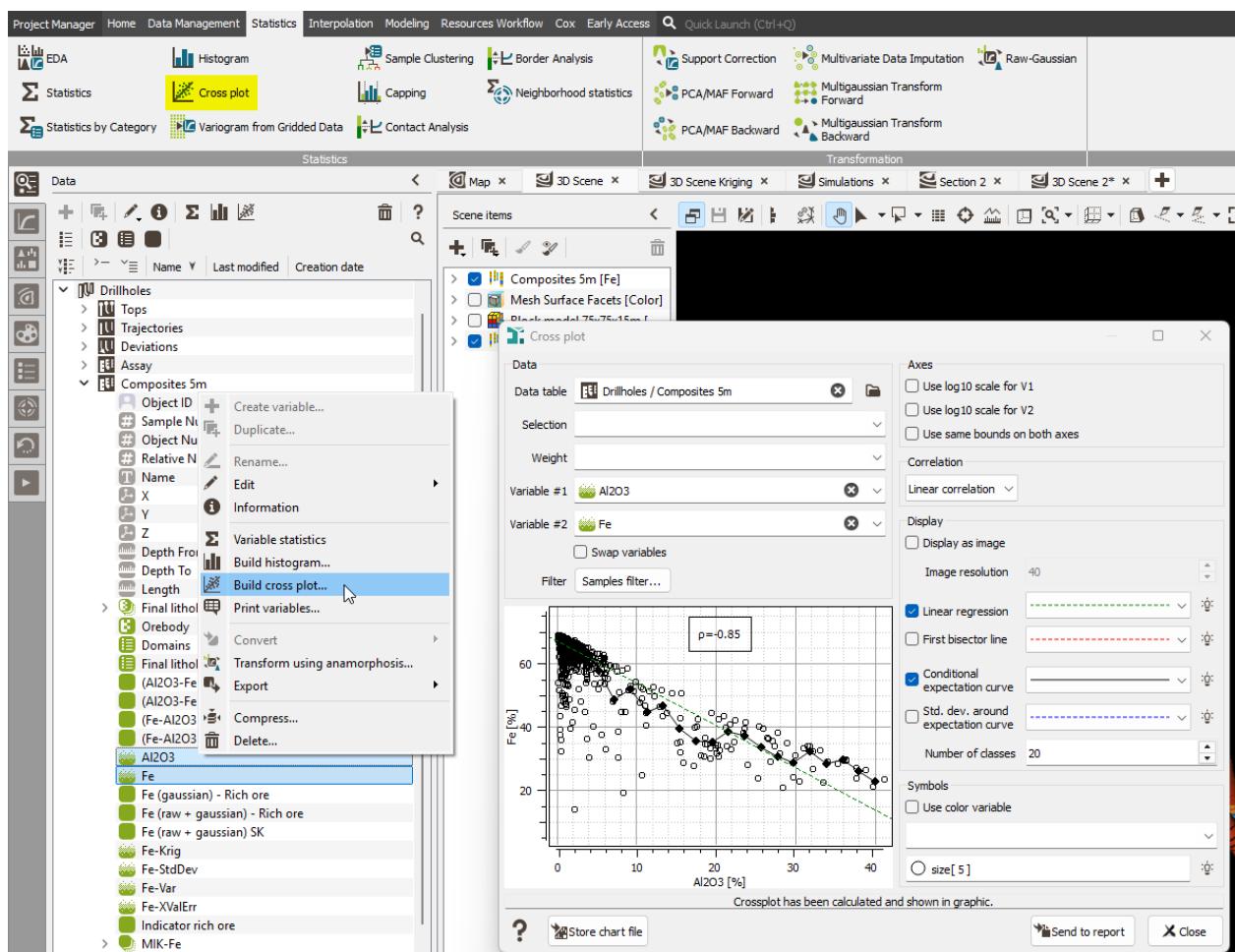
Isatis.neo 2025.2

Home

A new unit, **g/cm³ (gram per cubic centimeter)**, has been **added to the Mass Density unit class**.

$1 \text{ g/cm}^3 = 1 \text{ T/m}^3 = 1000 \text{ kg/m}^3$

This enhancement allows you to define and convert mass density values using this commonly used unit, improving flexibility and compatibility with various datasets and industry standards.


The performance of Vulcan file import has been drastically improved. By switching from per-sample loops to vectorized operations using NumPy arrays, import times are now up to **10 times faster**, especially on large block models. This update also includes:

- **Better handling of large files**, with smarter memory management to reduce memory leaks and avoid crashes on heavy operations.
- **Smarter chunking** of data to prevent issues with gRPC message size limits.
- Improved error handling for long operations and oversized datasets.

These enhancements make the import process significantly more efficient, reliable, and scalable for large mining projects.

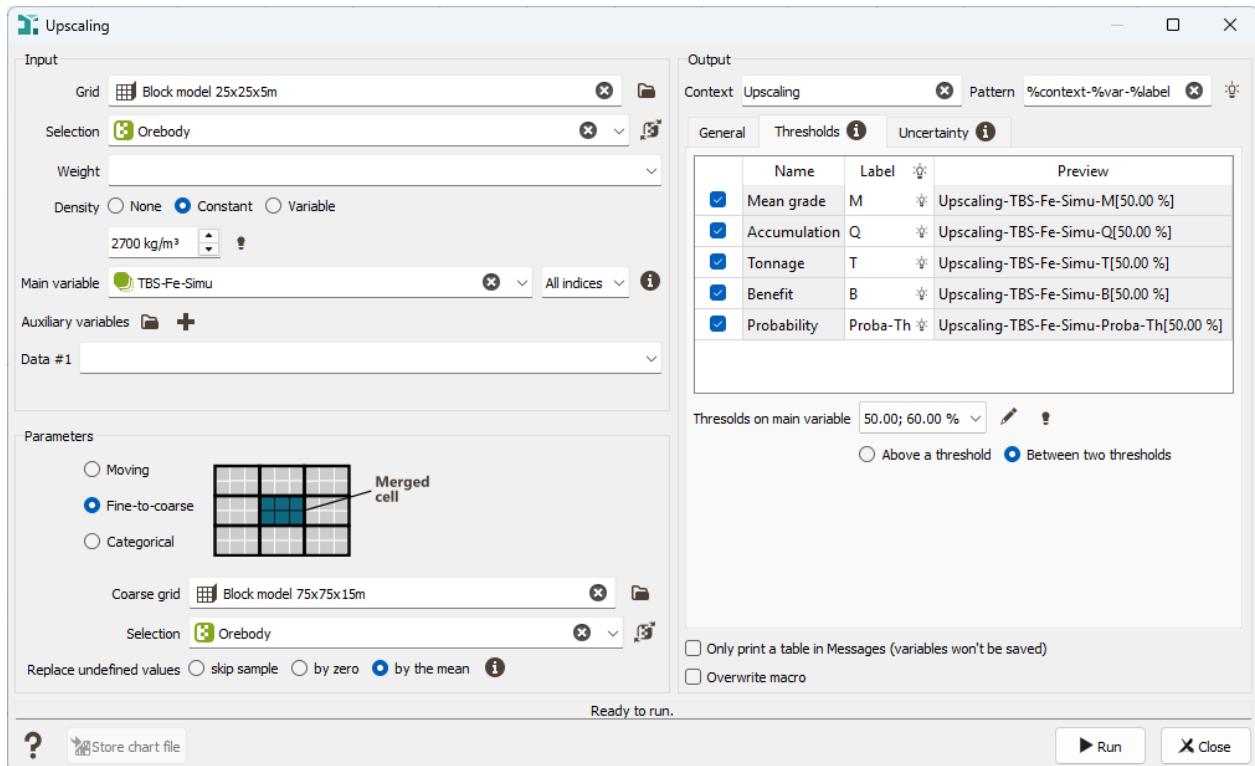
Statistics

A new **Cross plot** functionality allows you to quickly generate a correlation scatter plot between two variables without going through the Exploratory Data Analysis (EDA) module. This approach removes the limitation on the number of samples, making it more flexible and efficient. The task can be launched directly from the ribbon or via the data tree by selecting two variables from the same data table and right-clicking. The Cross plot provides the same set of options available in EDA (swapping variables, applying a log10 scale, adding various lines and curves, defining a color variable...). If one of the selected variables contains more than 100 000 defined samples, the Display as image option is automatically switched on. This new feature offers a faster and more intuitive way to visualize relationships between variables while maintaining the advanced customization options you are familiar with.

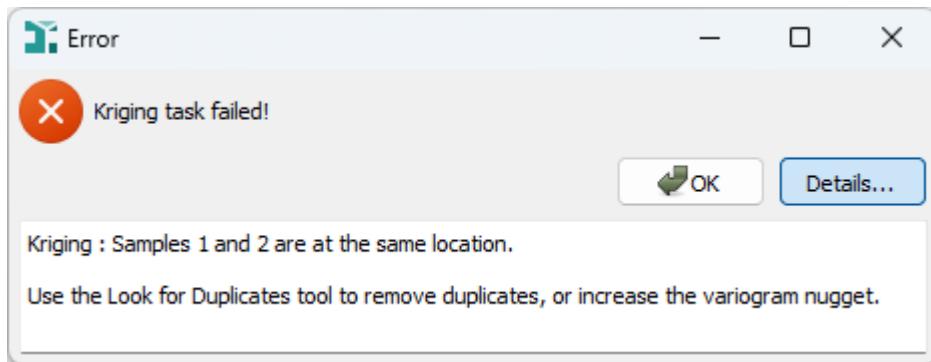
Interpolation

The **Upscaling** task provides a flexible and efficient way to transfer variables from one grid to another, whether they are simple variables (e.g., estimation results) or macro variables (e.g., simulation results). This enables you to perform post-processing, generate reliable upscaled results, and assess uncertainties on the upscaled outputs. The task supports different approaches to adapt to different needs:

- **Moving:** Uses a configurable neighborhood (including anisotropy) around each input cell to compute statistics.
- **Fine-to-coarse:** Aggregates fine-grid statistics (e.g., SMUs) into coarser blocks (e.g., panels), provided the two grids are geometrically compatible. This mode also allows you to manage undefined fine-grid values by skipping them (default) or patching them with zero or with the mean of the associated coarse block.
- **Categorical:** Computes aggregated statistics by category (e.g., lithology, domain), enabling cumulative analysis per group.


The Upscaling task produces specify several output variables grouped in three different tabs:

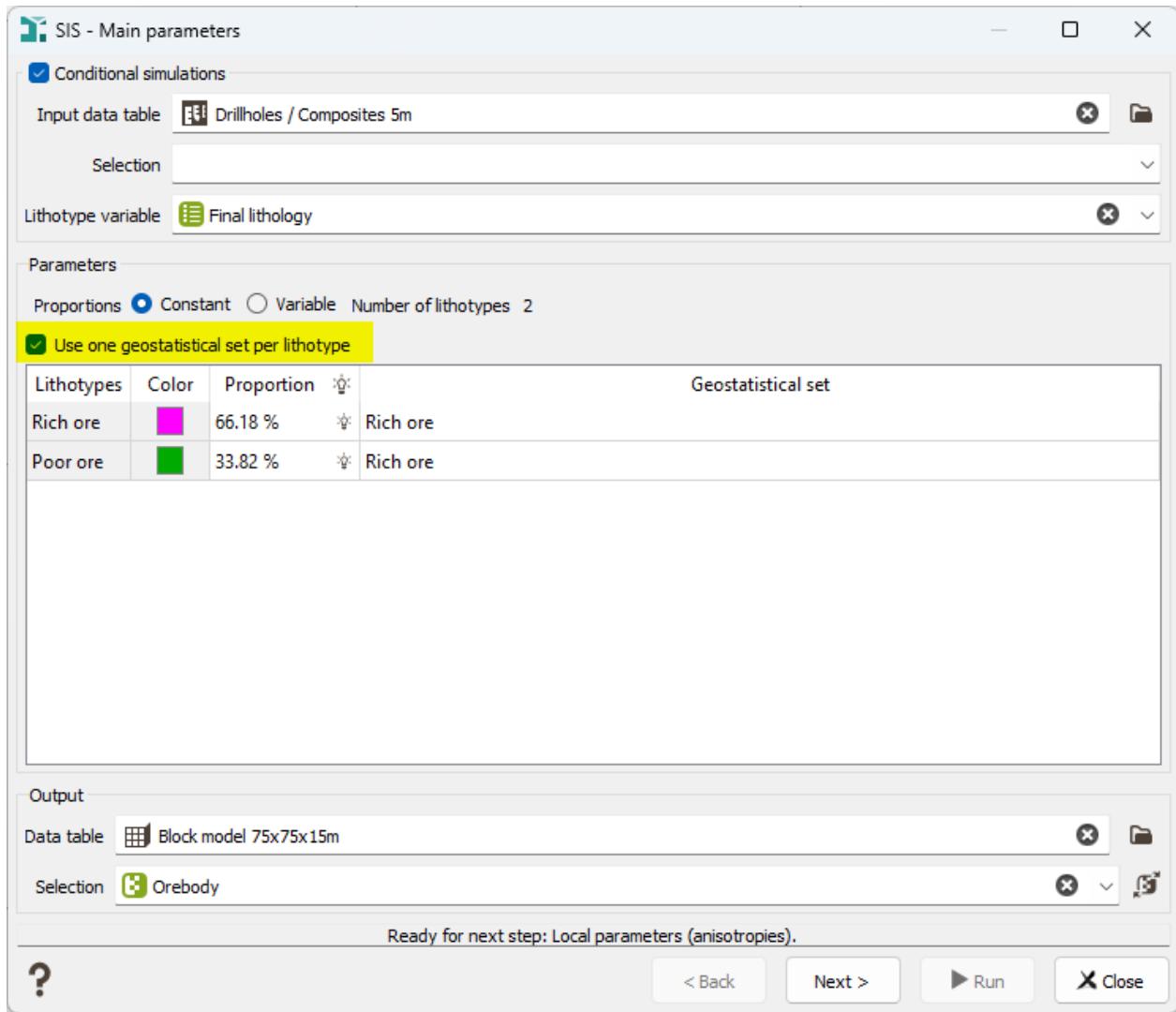
- **General:** Under this tab, you will find main statistics (mean value, standard deviation, variance, coefficient of variation, minimum or maximum of the target variable and quantiles).
- **Thresholds:** Under this tab, you will find results associated with threshold(s), as Q, T, M variables, as well as benefit and probability. You can consider values greater or equal to a defined threshold, or values within an interval defined by two thresholds.
- **Uncertainty:** Under this tab, which is visible only if a *macro* variable is provided as input, you will find confidence interval width, relative-to-mean/median estimation error, tolerance width, probability within tolerance.


Additional features include the support for a **weight** variable to compute weighted statistics, as well as the **density** handling (none, constant, or variable) for mass-based computations in 3D, with optional thickness factors in 2D.

Results can be stored as variables or simply displayed in the Messages window, and chart files can be exported for further analysis.

This task provides a powerful framework for scaling results across grids and categories, offering both flexibility and consistency for resource modeling workflows.

A new check has been added to **kriging** tasks (Kriging, Simulations, Quick Interpolation and Cross-Validation), when the variogram model does not contain any nugget effect, to automatically **identify duplicate data points** before launching the calculations. This enhancement helps prevent matrix inversion instabilities that may lead to very bad results. In such cases, the following error message will be displayed:



The **Grade Tonnage Curves and Tables** task has been enhanced with several new features and refinements:

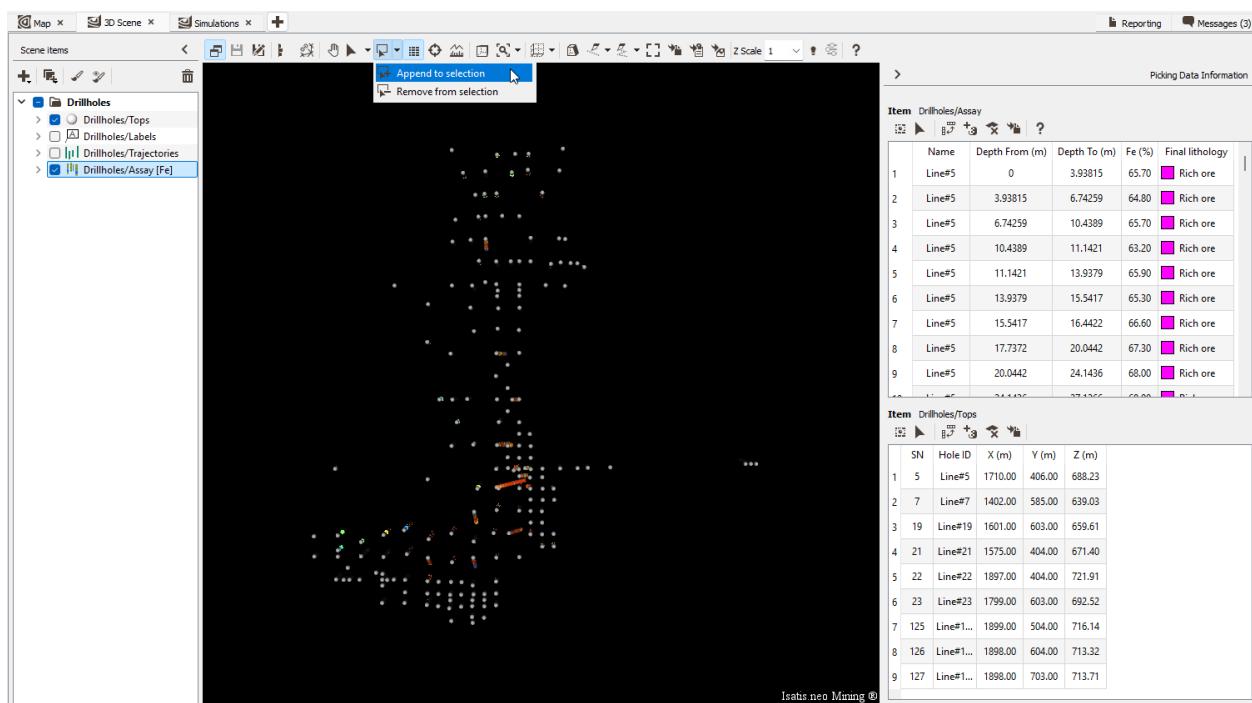
- **Adjustable table text size:** A slider has been added to modify the text size of the output tables, improving readability.
- **Updated default units:** The default units for the **Tonnage** and **Metal** variables have been changed from *Kilograms (kg)* to *Megatonnes (Mt)*, reflecting standard practice in the mining industry.
- **New mode – Against main dataset:** This new calculation mode enables more flexible and precise analyses:
 - Metal values are extracted from the main dataset.
 - The calculation is performed only in locations where Tonnage is defined in the current dataset.
 - Where Tonnage values are not defined in the current dataset, the Metal variable is set to undefined.

TBS x SIS					
Cutoff [%]	Tonnage [Mt]	Metal [Mt]	Grade [%]	Volume [m³]	Benefit [Mt]
0.00	1,242.62	819.59	65.96	460,229,664	819.59
50.00	912.23	603.41	66.15	337,863,968	147.29
51.00	911.22	602.90	66.16	337,487,456	138.18
52.00	909.93	602.23	66.18	337,009,632	129.07
53.00	908.34	601.40	66.21	336,423,840	119.98
54.00	906.47	600.39	66.23	335,728,448	110.90
55.00	904.00	599.05	66.27	334,814,656	101.85
56.00	900.81	597.28	66.30	333,632,192	92.83
57.00	896.81	595.02	66.35	332,150,816	83.84
58.00	891.70	592.08	66.40	330,259,328	74.89
59.00	885.12	588.23	66.46	327,821,856	66.01
60.00	876.29	582.97	66.53	324,550,304	57.20
61.00	864.20	575.65	66.61	320,074,656	48.49
62.00	847.36	565.29	66.71	313,835,712	39.93
63.00	822.75	549.91	66.84	304,723,616	31.57
64.00	785.53	526.26	66.99	290,937,472	23.52
65.00	725.33	487.40	67.20	268,642,144	15.94
66.00	622.71	420.14	67.47	230,634,432	9.15
67.00	441.70	299.69	67.85	163,594,448	3.74
68.00	167.90	114.83	68.39	62,185,852	0.66
69.00	6.08	4.20	69.13	2,251,378	0.01
70.00	0.00	0.00	0.00	0	0.00

Previously, **Sequential Indicator Simulations (SIS)** could only be performed using a single geostatistical set, typically the one corresponding to the most representative category. A new option now allows the use of a **different geostatistical set for each input lithotype**, providing greater flexibility in modeling. By default, a single common set is still applied, but you can now choose individual sets if needed. To ensure compatibility with local parameters, all selected geostatistical sets must share the same global rotation. If this condition is not met, the option will not be available on the second page of the SIS workflow. This enhancement enables more accurate and tailored simulations when working with heterogeneous lithologies, while maintaining control over parameter consistency.

Display

The **Picking Table** functionality, previously limited to the **Map** window, is now also accessible directly in the **3D Viewer**. Easily view and interact with data linked to your interactive selections, even across multiple tables at once.


- In the **Map**, information display requires selecting a specific layer, and only one table can be shown at a time.
- In the **3D Viewer**, you can pick and display information from multiple items visible in the scene simultaneously. The number of tables will match the number of data tables containing selected objects.

The Picking Table is fully synchronized with your selection: updating it will automatically refresh the displayed information. By default, it shows the values of the color variable used for display, but you can also view several variables at the same time. Interactive selections can be saved as new variables and reused in other tasks, making data exploration even more powerful.

A new **Rectangular selection** tool makes it faster to work with multiple selections. Simply draw a rectangle on the screen to select several samples at once, with options to add or remove from your selection.

- **Append to selection** (or hold *Shift*) to add objects.
- **Remove from selection** (or hold *Ctrl+Shift*) to deselect objects.

Note: The Rectangular selection works for *points* and *drillholes* only (not for *grids*, *meshes*, *polygons* and *polylines*).

Defect Fixes

ING-5129 - Exploratory Data Analysis

In EDA batch runs, setting a non-automatic max distance with an automatic slider step triggered a warning and blocked execution. This is now fixed: if values are inconsistent, the slider step is deactivated automatically to allow the task to run.

ING-5217 - Create Selection from Filter

In the "Create Selection from Filter" task, selecting a variable via autocomplete could unintentionally create a second rule (R2) using the same variable. This has been fixed by deferring the field reset to avoid duplicate triggers from the autocomplete.

ING-5281 - Domain Modeling

Since version 2023.08.2, **rectangle selection** in Domain Modeling no longer worked due to changes in OIV10, which stopped returning segment info. The selection now uses vertex indices to restore proper functionality.

ING-5320 - Import LAS

Importing LAS files without a STOP line now triggers a clear warning, and the value is automatically estimated using the max depth from curves. The unit conversion for depth now relies on the DEPTH field instead of the STOP line. Additional fixes improve the handling of malformed well parameter lines and better support LAT/LONG top coordinates, with checks for consistency and project compatibility.

ING-5324 - Calculator

Using Whole File mode in the Calculator with an empty selection caused a crash due to a division by zero. This has been fixed to prevent the crash and handle empty selections safely.

ING-5325 - Calculator

Assignments using NumPy views with reversed strides (e.g. `[: :-1]`) in the Calculator could produce incorrect results. The value retrieval order has been fixed to handle such views properly during assignments.

ING-5327 - Create Sub-block Model from Mes(hes)

In the "Create Sub-block Model from Mesh(es)" task, setting a zero value for minimum DZ in Irregular Z mode caused the **process to run indefinitely**. A safeguard now sets a minimum value internally to avoid this issue.

ING-5330 - Multigaussian Transformation backward

In some cases, running the PPMT backward transformation **did not generate** the expected simulation **macro variable**, despite appearing to complete successfully. This was caused by outdated internal references, which are now properly cleaned during execution. A **status error** message has also been added when input variables are missing, to help users identify configuration issues more easily.

ING-5331 - Exploratory Data Analysis

In EDA, using advanced multidirectional settings could trigger an "Invalid slider step ranks" error due to incorrect automatic slider step calculations or premature validation. The slider logic has been fixed to ensure proper initialization and loading of saved parameters.

ING-5332 - Simulations

Simulation post-processing macros (cutoffs, uncertainty, quantiles) were always **overwritten across domains**, even when the overwrite option was disabled. This behavior has been corrected, and warning messages are now properly displayed.

ING-5334 - Data Explorer

Duplicating a compressed drillholes file from the Data Explorer could fail due to a write error on compressed variables. The process now correctly handles these cases by decompressing when needed before writing, then recompressing afterward if necessary.

ING-5335 - Exploratory Data Analysis / Variography

Adding variograms for both the PPMT and its Gaussian macro variable could trigger a warning due to duplicate calculator IDs. This has been fixed by removing duplicate IDs from the list.

ING-5336 - Import GRDECL

Importing Eclipse files with alphanumeric values under certain keywords could cause an infinite loop and a **memory error**. The import now correctly handles such cases by distinguishing between keyword values and new keywords.

ING-5338 - Kriging

Using conditional expectation with the same input and output dataset could cause the kriging to fail due to a division by zero when computing accumulation. The issue is now fixed by setting the probability above cutoff to 1 when the kriging standard deviation is zero.

ING-5342 - Kriging

In the kriging task, switching from a Gaussian to a raw input Gset caused the capping variable filter to incorrectly show Gaussian variables. The filter now resets properly to display raw variables when changing input type.

ING-5343 - Neighborhood statistics

In Neighborhood Statistics, missing reference variables for capping or category spreading caused a blocking error. This has been changed to a warning, and the related options are now automatically disabled if the variables are not found.

ING-5347 - PluriGaussian Simulations

In PluriGaussian Simulations, running a batch with only one Gaussian variable could fail with an error message, preventing the simulation from executing. This issue appeared in version **2025.1.1** after a previous bug fix, and was caused by the second Gaussian model not being properly deactivated in batch mode.

ING-5351 - Simulations Validation

When running Simulation Validation on points or subblocks macro variables, the swath plots calculation might end the application prematurely due to **precision issues in coordinates**.

Isatis.neo 2025.2.1

Improvements and fixes in PluriGaussian Simulations

Several issues were addressed to improve the stability and consistency of the PluriGaussian Simulations (PGS) task:

- **Automatic inference toggles** are now properly disabled when the model or flag is manually modified, preventing unintended behavior during save or batch execution (ING-5352).
- **Model inference logic** has been corrected to ignore unused geosets when inference is active, avoiding unexpected model overrides in batch mode (ING-5357).
- **Geoset preview** now remains functional after modifying the flag, fixing a previous crash due to an unhandled exception (ING-5358).
- **Flag rank** is now correctly preserved when navigating back and forth in the lithotype rule page, ensuring consistency in score interpretation (ING-5359).
- **Model parameters** are correctly reloaded when using an existing geoset without inference, with improved handling of parameter volatility based on the model source (ING-5361).

As a result of these fixes, simulation outputs may differ from previous versions, especially in batch mode, where the use of auto/manual toggles and model sources is now more consistently respected.

Defect Fixes

ING-5337 - 3D Viewer

Changing the **color variable** for a **corner point grid** in the **3D** view had no visual effect after the initial assignment—the color scale only updated in the properties panel. This has been fixed by applying the same correction previously made for sub-blocks.

ING-5345 - Geostatistical Sets

Editing a variogram from the Geostatistical Sets explorer always showed the “Global orientation” toggle as active, even when structures had different orientations. The parameter loading has been fixed to correctly reflect the model’s orientation settings.

ING-5348 - Rotation / Sequential Indicator Simulations

Running **SIS** with a **rotation variable** linked to a **deleted custom convention** caused an error. A check now prevents deletion of a rotation convention if it’s still in use, similar to catalog behavior, and the misleading error message has been removed.

ING-5354 - Exploratory Data Analysis

In EDA, zooming in or out on a beta anamorphosis graph caused the axis maximum to incorrectly reset to the curve’s maximum. This has been fixed by aligning the zoom bounds with the displayed curves.

ING-5356 - Change Unit Class

Converting a variance variable to a unitless class did not account for the unit’s power (e.g., %²), leading to incorrect scaling. The transformation now correctly applies the power value during conversion.

ING-5360 - Exploratory Data Analysis

Computing a **VMap** for an **indicator variable** with a weight caused a **blocking warning** if the weight had undefined values. The calculation now skips samples with N/A weights to avoid this issue.

ING-5362 - Import ODBC

Reusing import task parameters in batch mode could cause a **fatal error** if some variables were **missing from the new database**. This check is now downgraded to a **warning**, allowing the task to proceed and improving flexibility when adapting batch files.

ING-5363 - Batch Run

Running a batch file with a **Python** block that raises an error could lead to a **rollback error message** when refreshing or closing the project. This has been fixed by properly finalizing the transaction even in case of Python errors.

ING-5365 - Data Explorer

If a Python block in a batch file failed, automatic **updates** to the **data tree** (e.g., after creating or deleting variables) stopped working until the project was manually refreshed. This has been fixed by ensuring updates are properly unlocked even when exceptions occur.

ING-5366 - Grade Tonnage Curves and Tables

Applying **GTC** on a **points dataset** caused a **crash** in version 2025.2, although it worked in 2025.1. This regression has been fixed for both 3D and 2D points files.

ING-5368 - Grade Tonnage Curves and Tables

The error message shown in GTC when only density or ore recovery is defined was unclear. It has been reworded to better guide users: both fields must be defined for the calculation to proceed.

ING-5370 - Neighborhood Manager

When we save a neighborhood, the capping (top and low) and categories variables are displayed as additional information in the Neighborhood explorer. But after re-entering the project, those variables are not displayed anymore.

ING-5371 - Simulations

In simulations using the DBS mode with a moving neighborhood, results could be empty when using the "**Spread samples over categories**" option (with a CODE variable) or when applying **capping with cutoffs**. These variables were incorrectly handled during the centering step, making them unusable. The centering process now correctly includes both CODE and cutoff variables, ensuring proper behavior with category spreading and capping in DBS simulations.

ING-5372 - Create Selection from Polygon(s)

Creating a selection from multiple polygons could select incorrect samples when multithreading was enabled, due to a race condition in bounding box calculation. This has been fixed to ensure correct results regardless of thread count.

ING-5373 - Grade Tonnage Curves and Tables

GTC could crash when the number of simulations in the input variable was lower than what was saved in the batch file (e.g. fewer realizations after rerunning simulations). This has been fixed to ensure consistency and avoid crashes when inputs change.

ING-5374 - Grade Tonnage Curves and Tables

In GTC, using multiple "**Block Anamorphosis**" datasets from the same multivariate geoset could cause a **crash** or **incorrect results**—especially with the "**cutoffs on main dataset**" option. These issues have been fixed to ensure stable and accurate calculations when using block or point anamorphosis.

ING-5376 - Create Mesh from Isovalue

Since version 2025.1, the "Create Mesh from Isovalue" task **could crash** at the end of the calculation in **Volumetric mode** due to incorrect memory handling. This has been fixed to ensure stable execution under Windows.

ING-5377 - Grade Tonnage Curves and Tables

In GTC, using grade variables in "**against main dataset**" mode produced **incorrect results** due to a mismatch in variable positioning. Switching to "**on main dataset**" caused a **crash**. Both issues have been fixed to ensure correct handling of multiple variables in these modes.

ING-5381 - Simulations

In the Simulations task, the "Overwrite Macro" warning was incorrectly shown even when the output variables didn't exist yet. This has been fixed to display the warning only when overwriting actual existing variables.

ING-5382 - Section Viewer

Exporting a section to an XML file caused a **crash**, introduced in version 2024.04. This has been fixed by adding the necessary checks, and the Rename, Duplicate, and Export actions have been removed from the quick launch ribbon to prevent similar issues.

ING-5385 - Simulations

In **Direct Block Simulations**, using “**spread samples over categories**” with a categorical variable caused a **crash** due to type mismatch. This is now fixed—categorical variables are properly handled without needing to convert them to integers manually.

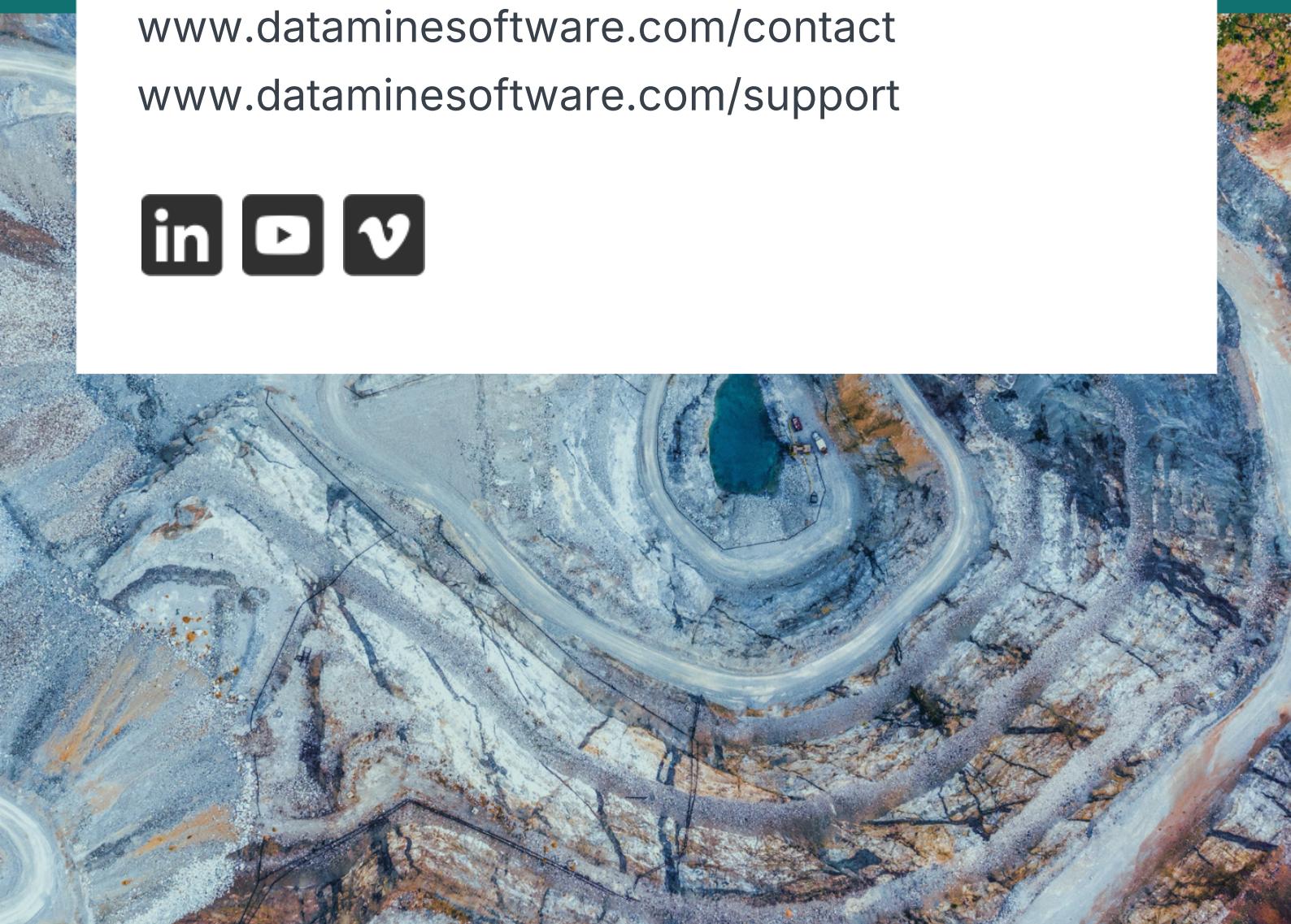
ING-5386 - Quick Interpolation

Inverse-distance interpolation failed when using the **simplified neighborhood** in Quick Interpolation, while other methods and advanced mode worked correctly. This has been fixed by correcting variable initialization during setup.

ING-5387 - Create Grid File

In the “Create Grid File” task, when extracting a 2D grid from another grid using index ranges, reloading the batch could display incorrect automatic maximum indices. This has been fixed to ensure proper handling of index values when reopening the task.

Datamine enables efficient and sustainable mining through the application of world-leading technology and services.


Read the Docs

docs.dataminesoftware.com

Get in Touch

www.dataminesoftware.com/contact

www.dataminesoftware.com/support

